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Abstract 

Small cell lung cancer (SCLC) is an aggressive and heterogeneous subtype, representing 15% of lung cancer cases. 
Although SCLC initially responds to etoposide and platinum (EP) chemotherapy, nearly all patients relapse with resist-
ant tumors. While recent advances in immunotherapy have shown promise, only 10–20% of patients benefit, 
and effective stratification methods are lacking. The mechanisms of resistance to both therapeutics remain obscure. In 
this study, we aimed to gain insights into those leveraging a recent surge in the field of SCLC genomics. We con-
structed a regulatory network for SCLC and identified granulin precursor (GRN) as a hub of EP response associated 
genes. GRN-low patients showed improved survival with chemotherapy, while GRN-high patients exhibited resistance. 
GRN overexpression in SCLC cells conferred resistance to EP treatment and suppressed neuroendocrine features. GRN 
and its associated genes were linked to cancer cell intrinsic immunogenicity, and single-cell RNA-seq data revealed 
that GRN expression is particularly high in subsets of tumor-associated macrophages. In concordance with these 
findings, GRN-low tumors showed significantly better survival with chemo-immunotherapy, while GRN-high tumors 
did not benefit from additional immunotherapy. GRN-high tumors, associated with non-neuroendocrine (non-NE) 
subtypes, had a higher level of macrophage infiltration, potentially contributing to immunotherapy resistance. These 
results highlight GRN as a critical regulator of chemo-resistance and a potential biomarker for immunotherapy resist-
ance in SCLC. Targeted therapeutic strategies for GRN-low patients could improve outcomes, while new approaches 
are needed for GRN-high patients. Overall, our findings implicate GRN as a bridge between chemotherapy and immu-
notherapy resistance through GRN-mediated mechanisms.
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To the editor
Small cell lung cancer (SCLC) is the most aggres-

sive form of lung cancer, with most patients developing 
rapid resistance to etoposide and platinum (EP) chemo-
therapy, leading to poor outcomes [1]. While immune 
checkpoint blockade (ICB) therapies have demonstrated 
promise, only a minority of patients (10–20%) benefit 
[2], and the molecular mechanisms behind therapeutic 
resistance are still not well understood. In this study, we 
performed a comprehensive regulatory network analysis 
and identified granulin precursor (GRN) as a critical reg-
ulator associated with resistance to both chemotherapy 
and immunotherapy. Here, we summarize the key find-
ings from our investigation, highlighting the functional 
role of GRN and its potential as a biomarker for stratify-
ing patients based on their likelihood of benefiting from 
these therapies.

GRN is a key regulator of chemo‑resistant genes 
in SCLC
To identify consistent transcriptomic features under-
lying chemo-resistance in SCLC, we analyzed 359 EP-
resistant genes (EP-res) from SCLC patient-derived 
xenografts (PDX) [3] and 223 cisplatin-resistant genes 
(Cisplatin-res) from genetically engineered mouse mod-
els (GEMMs) [4] (Table. S1). While the overlap was sta-
tistically significant between two signatures (Fisher Exact 
Test (FET) Odd-ratio (OR) = 2.9 and p value = 0.005), 
small number of overlapping genes (n = 9) limited fur-
ther investigations on common molecular mechanisms 
(Fig.  1A). By constructing a molecular causal network 

from 135 SCLC primary tumors using Bayesian Network 
(BN) approach [5] (Fig. S1A), we identified a two-layer 
subnetwork that included 43 shared genes, demonstrat-
ing the utility of network analysis in connecting both sig-
natures (Fig. 1A). Key driver analysis revealed GRN as the 
central hub gene for chemo-resistance connecting both 
signatures (Fig. 1B, C, Table S2).

The role of GRN as a chemo-resistance driver was 
further confirmed across multiple independent SCLC 
transcriptomic data from SCLC cell lines [6], PDX [3], 
Circulating Tumor Cells derived xenograft (CDX) [7], 
and GEMM models [8], where GRN expression was 
significantly associated with chemotherapy responses 
(Fig. 1D–I, Fig. S1B–G). Notably, in paired CDX samples 
from two patients, that were initially sensitive to cisplatin 
but relapsed after treatment [9], GRN expression was sig-
nificantly higher in cisplatin-treated samples (Fig. 1J). We 
showed that SCLC cell lines overexpressing GRN exhib-
ited increased resistance to EP, with significantly higher 
IC50 values compared to GRN-low cells (Fig. 1K). While 
GRN knockdown did not restore chemo-sensitivity in 
resistant cells (Fig. S1H), GRN overexpression in sensi-
tive cells was sufficient to induce resistance (Fig. 1L-M), 
suggesting GRN’s critical role in initiating, but not main-
taining, a chemo-resistant state.

GRN and its associated genes classify SCLC patients 
into groups with distinct therapeutic responses
We then identified GRN-associated genes, 249  GRN+ and 
124  GRN−genes (Table S3), using CCLE data to evaluate 
how GRN mediates tumor-intrinsic resistance, which are 

(See figure on next page.)
Fig. 1 A causal regulatory network of small cell lung cancer identifies GRN as a key regulator of chemo-resistant signatures. A Overlap of network 
neighbors of chemo-resistance signature genes. EP resistant signatures derived from a PDX model (EP res) and cisplatin resistant signatures derived 
from a mouse model (Cisplatin res) were projected on the network with the signatures as seed nodes and their n-layer neighbors in the network 
were collected Gene: direct overlap of signature genes without network expansion, 1: overlap of one-layer neighboring nodes from seeds, 2: 
overlap of two-layer neighboring nodes from seeds,  2c: overlap of the largest connected subnetwork among the two-layer neighboring nodes, 
3: overlap of three-layer neighboring nodes from seeds. The bin colors indicate odd ratio (OR) of the overlap between EP res and Cisplatin res 
associated gene sets. Fisher’s exact test (FET) p-values were -log10 transformed. B The largest connected subnetworks of the two-layer neighboring 
nodes of Ep res (left) and Cisplatin res (right). The intersected subnetwork is highlighted (middle). C A subnetwork within two layers from GRN. EP 
res and cisplatin res genes are colored in red and purple, respectively. D–F Correlation between GRN expression in SCLC cell lines (x-axis) and  IC50 
values (y-axis) to SCLC drugs (cisplatin, oxaliplatin, and irinotecan) downloaded from GDSC database [6]. Ln(IC50) zero value corresponding to 1 µM 
is marked in red dashed line. G Correlation between GRN expression (x-axis) and the ranking of EP response (y-axis) in 19 SCLC PDX models [3]. 
D–G Pearson correlation coefficients and p-values are calculated. H GRN expression (y-axis) difference between baseline and progressed tumors 
from SCLC CDX [7]. I Grn expression (y-axis) difference between neuroendocrine and non-NE SCLC cells from Rb1f/f;Trp53f/f; Ptenf/f TKO GEMM [8]. 
H–I Two-sided t-test p-value is calculated to assess the differences. J GRN expression (y-axis) between vehicle- and cisplatin-treated CDX models 
from patients SC68 and SC53 [9], respectively. Expression differences are assessed by Wilcoxon rank-sum test. K (Above) Western blots showing 
protein expression of GRN in four SCLC cell lines. (Below) Viability of each cell lines with equimolar treatment of EP for 96-h relative to vehicle 
control.  IC50 =  ~ 18.83uM and ~ 1.86uM for SHP77 and H841, and ~ 55 nM and ~ 0.54 nM for H524 and H2081, respectively. L, M (Above) Western 
blots confirming GRN over-expression (OE) in the two  GRNlow cells (H524 and H2081). (Below) Viability of each cell line with equimolar treatment 
of EP for 96-h relative to vehicle control.  IC50 > 1uM for both H524 and H2081 with GRN OE
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Fig. 1 (See legend on previous page.)
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also associated with both primary and acquired chemo-
resistance (Fig. S2). When we classified human SCLC 
tumors by the GRN-associated genes into GRN-high 
(n = 45) and GRN-low (n = 90) groups (Fig. S3), GRN-low 
group showed better survival in both Overall Survival 
(OS) and progression free survival (PFS) with chemo-
therapy (Fig. 2A), while GRN-high group did not differ in 
survival with or without chemotherapy (Fig. 2B).

Single-cell RNA-seq analysis of human SCLC tumors 
[10] revealed that GRN was highly expressed in alveolar 
macrophages (AMs) and tumor-associated macrophages 
(TAMs), especially in patients with progressed disease 
(Fig.  2C–F, Fig. S4). Cellular composition of the bulk 
SCLC tumors by deconvolution [11] revealed a signifi-
cant positive correlation between GRN expression and 
the proportion of macrophages, particularly AM1, AM2, 
and TAMs (Fig.  2G–I). This suggests that GRN-high 
tumors have a more macrophage-enriched TME, which 
may contribute to both chemo-resistance and immuno-
therapy resistance.

Given these results, we explored whether GRN could 
serve as a biomarker for predicting immunotherapy 
response. Analysis of 271 treatment-naive patients from 
the IMpower133 clinical trial data [12], which com-
bined chemotherapy with ICB (anti-PD-L1), showed that 
patients with GRN-high and GRN-mid tumors did not 
benefit from additional immunotherapy (Fig.  2J, K). In 
contrast, patients with GRN-low tumors showed a sig-
nificant survival benefit from the combination of chem-
otherapy and immunotherapy (Fig.  2L). This differential 

response supports the potential of GRN as a stratification 
biomarker for ICB therapy response.

Conclusion
Our study identifies GRN as a key regulator of both 
chemo-resistance and immunotherapy resistance in 
SCLC, acting through both tumor-intrinsic mecha-
nisms and interactions with the TME. The integration 
of GRN into clinical decision-making could provide a 
valuable tool for patient stratification, allowing more 
personalized therapeutic strategies. For GRN-low 
patients, combined chemo-immunotherapy offers sig-
nificant survival benefits, while for GRN-high patients, 
novel approaches targeting the tumor microenviron-
ment or GRN-driven pathways may be required to 
overcome resistance. Future validation through in vivo 
experiments and additional clinical datasets will be 
critical to fully elucidate the therapeutic potential of 
GRN, including the genetics, epigenetics, and molecu-
lar mechanisms underlying its role in resistance, its 
downstream effectors, interactions within key signaling 
pathways, and the interplay between tumor-intrinsic 
and environmental features. Moreover, studies explor-
ing dynamic fluctuations in GRN levels during treat-
ment and its interaction with immune checkpoint 
pathways and T-cell infiltration are needed to deepen 
our understanding of GRN’s role in shaping tumor 
immunogenicity and therapeutic resistance.

Fig. 2 GRN and Its Associated Genes Classify SCLC Patients into Groups with Distinct Therapeutic Responses. A, B KM plots (left: OS and right: 
PFS) showing survival differences between chemo-treated and not-treated patients in GRN-low group (A) and in GRN-high group (B). Samples 
from George et al. whose survival information available are included in the analysis. Log rank test (LRT) p-values are calculated to assess survival 
differences between the groups. C GRN expression (y-axis) in various cell types in SCLC primary tumors. Cell type annotation information is from the 
original paper [10]. D GRN expression (y-axis) varies in myeloid cells from patients with different disease progression. E UMAP plot showing 
multiple myeloid subtypes annotated in the original paper [10]. F GRN expression (y-axis) in myeloid subtypes. Expression differences are assessed 
by Wilcoxon rank-sum test. G–I Cell fractions are estimated in bulk tissue expression profiles of primary tumors for alveolar macrophages 1/2, 
and tumor-associated macrophages in GRN-high and GRN-low tumors classified based on GRN-associated genes. Two-sided t-test p-values are 
assessed for cell fraction differences. J–L KM plots showing survival differences between Atezolizumab and placebo in GRN-high, in GRN-mid, 
and in GRN-high groups for and overall and progression-free survival respectively. Log rank test (LRT) p values are calculated to assess survival 
differences between the groups

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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Abbreviations
SCLC  Small cell lung cancer
EP  Etoposide and platinum
ICB  Immune checkpoint blockade
PDX  Patient-derived xenograft
GEMM  Genetically engineered mouse models
CDX  Circulating tumor cells-derived xenograft
TME  Tumor microenvironment
FET  Fisher’s exact test
AM  Alveolar macrophage
TAM  Tumor-associated macrophage
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